Tumgik
#sim: cara penrose
watermelonsandalts2 · 2 years
Text
NoName Girl NPC’s (Life is Strange)
Tumblr media
This download is for The Sims 2
Download: [SFS]
More info below the cut.
Feels good to finish and share these! Hope you have fun with them!
These four female students are non-interactable NPC’s from Life is Strange (2015). They are found scattered through the grounds and buildings of Blackwell Academy with variations in hair and clothing colours. I have gone with the most common variations for each of these NPC’s. Since they’re NPC’s who most people don’t have the time of day for, I gave them names myself.
Tumblr media
Cara Penrose
This NPC can sometimes be seen in the school grounds and buildings, but appears more frequently at the Vortex Club’s End of the World party, where she dances away, and hangs out in the VIP section.
Tumblr media
Kelly Gringeri
This NPC first appears in the opening hallway scene of Episode 1, and can be seen talking to Luke Parker, so she’s most likely a friend of his. She also appears at the EOTW party, waiting to use the bathroom.
Note: Her glasses may flash blue when she is first played. To remedy this, I have found that changing her appearance in the mirror by removing and replacing them is a simple solution.
Tumblr media
Rebecca Blazer
She often wanders the hallways of Blackwell, and is later seen at the EOTW Party dancing around and also raving in the swimming pool.
Tumblr media
Charley Lampron
This NPC is often seen talking to art student Stella Hill in the academy grounds, and later assisting her with coat check at the EOTW Party, so she’s most likely a friend of hers.
19 notes · View notes
tesaonews · 5 years
Text
Entenda de uma vez o trabalho e o legado de Stephen Hawking
Olhando daqui, as estrelas parecem pontinhos estáveis no céu. Não se engane – é só aparência. Por trás da calmaria se esconde uma corda bamba cósmica. Um cabo de guerra delicado entre duas forças. A primeira delas é a gravidade. Estrelas, no início, são imensas nuvens de hidrogênio. Tão imensas que o gás entra em colapso por não aguentar a força da própria gravidade.
A pressão no interior da nuvem fica tão alta que ela se torna uma usina de produção de elementos químicos. Átomos de hidrogênio se fundem o tempo todo para se tornar átomos de hélio. Esse processo de fusão nuclear libera muita energia, e essa energia é irradiada para fora – compensando a atração gravitacional do gás e fazendo a estrela brilhar. É um equilíbrio muito sensível. Enquanto houver fusão, a fusão vai segurar a barra da gravidade. Por milhões de anos.
Quanto maior é a estrela, mais elaboradas são as fusões que ela pode fazer. Se ela fundir átomos de hélio, surgem os de carbono. Os de carbono se unem para fazer oxigênio. E por aí vai, até chegar no ferro. A fusão de núcleos para formar ferro não libera energia suficiente para compensar a gravidade. E aí a estrela começa a cair sobre si mesma. E cair. E cair. Cair até que ela não aguenta o tranco e… boom!
O que sobra da explosão é uma singularidade. Uma singularidade é o que surgiria se você conseguisse espremer a Terra até ela atingir o tamanho de um amendoim (parece piada, mas é a conta exata: 1,7 centímetro). É tanta massa que surge um rombo no tecido do espaço-tempo. A gravidade ali tende ao infinito. Se você jogar um líder do PCC lá dentro, a gravidade não vai deixar nem o sinal do celular dele sair. Em torno da singularidade, há uma espécie de “perímetro de segurança” – o ponto de não retorno. Passou dali, está engolido de vez.
Assim nascem os buracos negros. É importante narrar seu parto, já que eles são o segundo personagem mais importante dessa história. O protagonista, claro, é Stephen Hawking. O astrofísico provou que a existência desses corpos era algo inevitável, uniu teorias inconciliáveis para encontrar uma maneira de destruí-los, e notou que eles são capazes de deletar o software do Universo – dar sumiço na informação que faz de nós o que somos.
É impossível observar buracos negros diretamente. Tudo que veríamos seria algo chamado horizonte de eventos: a esfera absolutamente negra e lisa que marca o ponto de não retorno mencionado ali atrás. Mesmo assim, faz tempo que sabemos da existência deles, porque eles dão as caras de outro jeito: pela matemática. A primeira vez que um buraco negro se revelou para um terráqueo foi em 1916, em uma trincheira cheia de lama e neve no front leste da 1ª Guerra Mundial.
Entre um tiro e outro, um físico chamado Karl Schwarzschild, chamado pelo exército alemão para fazer cálculos de artilharia, entrou em contato pela primeira vez com as equações da Relatividade Geral de Einstein, recém-publicadas. E lá mesmo, na trincheira, concluiu o seguinte: se você colocar uma massa absurdamente grande num espaço ridiculamente pequeno, surge um detalhe incômodo, as tais singularidades. O próprio Einstein, mais tarde, se recusou a acreditar nelas. Achou que eram uma extravagância matemática, que não correspondia a nada que pudesse existir no mundo real.
Esse impasse durou décadas. As singularidades foram tratadas como um bug numa teoria que de resto era tão elegante quanto poderia ser. E é aí que entra a primeira realização de Hawking. Entre 1965 e 1973, em parceria com seu colega Roger Penrose, ele redigiu teoremas que demonstravam que a existência de singularidades não era um “defeito” na Relatividade Geral. Pelo contrário: eram uma consequência natural dela, dadas certas condições.
“Muito antes do Hawking e do Penrose nascerem, físicos teóricos já se deparavam com problemas nas soluções das equações de Einstein”, explica Juliano Neves, físico da Unicamp. “Mas foram eles que estabeleceram as condições para a existência (ou não) de singularidades. São teoremas muito bonitos, e boa parte dos cientistas os aceitam sem problemas.”
O buraco é mais embaixo
1. O TECIDO DA REALIDADE O alicerce do Universo é um “tecido” com três dimensões espaciais e uma temporal.
2. PEGANDO LEVE Planetas, estrelas e até você geram depressões nesse tecido – é assim que funciona a gravidade.
3. BIGORNA O buraco negro é um objeto tão denso e massivo que gera uma depressão infinita. Nem a luz escapa.
4. ROLO COMPRESSOR Para virar um buraco negro, a Terra precisaria ser espremida até ficar com 2 cm de diâmetro. Assim.
Um assassino singular
Bacana: singularidades – e, por tabela, buracos negros – podem existir. Mas isso só transforma uma extravagância matemática em uma real: como é que pode existir um objeto que engole tudo, até a luz, sem jamais devolver nada? Em 1974, Hawking deu seu próximo passo e descobriu que não era bem assim. Buracos negros, concluiu o britânico, soltam alguma coisa: radiação.
Acontece que não é qualquer radiação. Para chegar nela, Hawking precisou apelar para outro tipo de física: a quântica. A física quântica rege o mundo microscópico, o mundo das partículas que compõem os átomos. Ela funciona de acordo com leis bem diferentes das da física de Einstein, que lida com o mundo das coisas muito grandes, como estrelas e planetas. As duas andaram separadas por boa parte do século 20, pois são incompatíveis. Dá erro na calculadora.
Física quântica é assunto para um livro, não para um parágrafo. Mas o detalhe que interessa para nós é que, diferentemente da física que Hawking seguiu até aqui, a mecânica quântica descreve o mundo com base em estatística, não em previsões certeiras. Para ela, cada partícula que compõe a realidade – fóton, elétron etc. – na verdade deve ser entendida como um campo. Esse campo é como um “gráfico” que permeia todo o Universo. O gráfico representa a possibilidade de que uma partícula se manifeste em um determinado lugar.
Bom, às vezes esse gráfico se comporta de forma bizarra: surge um pico de energia aleatório, inesperado. E aí, pop! Brota uma partícula. Sim, em qualquer lugar. Acredite: o tempo todo, em todo o Universo, até embaixo do seu nariz, esse borbulhamento quântico está dando origem a partículas a partir do nada absoluto. Soa como um quadro surrealista, mas esse é um fenômeno muito bem descrito pelos números e já verificado na prática.
O tempo todo, em todo o Universo, partículas brotam no vácuo a partir do nada absoluto.
O negócio é que uma partícula qualquer não pode surgir assim. Com ela precisa obrigatoriamente vir, de brinde, uma antipartícula. A antipartícula é como uma gêmea má: igual à partícula, mas oposta em todos os sentidos. Da mesma maneira que + 1 – 1 dá 0, quando a partícula e a antipartícula se reencontram, elas se aniquilam – e o nada volta a ser nada.
Isso acontece rápido. Tão rápido que é tecnicamente impossível determinar que aconteceu. É por isso que esses pares ganham o nome de partículas “virtuais”. “As partículas virtuais não podem ser detectadas, mas alguns efeitos indiretos causados por elas podem ser medidos, e comprovar as previsões teóricas”, explica Cecilia Chirenti, astrofísica da Universidade Federal do ABC.
E é aí que entra o lampejo de Hawking: e quando rola um pipoco de criação de partículas às margens do horizonte de eventos do buraco negro? Se uma cair lá dentro e a outra não – não importa qual é qual –, elas não poderiam mais se aniquilar. A que caiu lá dentro, caiu. A que ficou de fora, ficou. Elas são forçadas a sair do estado virtual e se tornar partículas reais, perfeitamente detectáveis. O problema é que essas partículas não podem simplesmente se tornar reais, porque coisas reais têm energia, e energia não pode surgir de graça – ela precisa vir de algum lugar. De onde? Bem, ela é tirada do próprio buraco negro. “Como elas foram criadas a partir da energia gravitacional do buraco negro, se uma delas escapar, ela vai levar embora um pouco da energia dele”, afirma Chirenti.
Bingo. Olhando aqui da Terra, do seu sofá, você vê essas partículas fugitivas como uma radiação. A radiação Hawking. Energia e massa, no fundo, são a mesma coisa (lembra da fórmula e = mc²?). Então, quando energia é roubada do buraco negro, a massa dele também diminui. Se você der tempo ao tempo – uns 1000000000000000000000000000000000000000000000000000 anos para perder 0,0000001% da massa –, uma hora puf! Ele evapora, derrotado pelo mundo quântico.
O nada em ebulição
Para a física quântica, o vácuo não é vazio. É só dar um zoom que você verá campos de energia borbulhando – e partículas surgindo e sumindo em um piscar de olhos.
1. CALMARIA Visto de longe, o tecido do espaço-tempo é só um vazio: o palco em que se desenrola a realidade.
2. MAR BRAVO Dando um zoom, porém, a física quântica entra em ação: o vácuo é permeado por campos de energia, cada um correspondente a uma partícula – fóton, elétron etc.
3. GERAÇÃO ESPONTÂNEA Se rola um pico de energia aleatório em algum lugar do campo, aparece uma partícula ali. Isso acontece o tempo todo, inclusive na sua frente.
4. GÊMEA MÁ Mas o nada não pode dar origem a alguma coisa sem pagar um preço: junto surge uma antipartícula. Igual à partícula, só que ao contrário, como um + 1 e um – 1.
5. JOGO RÁPIDO Como essas partículas se aniquilam na hora, é impossível detectá-las: são chamadas “virtuais”, e, na prática, nunca existiram. Mas não fica nisso. Veja mais abaixo!
Essa sacada genial balançou a física da época. Hawking provou que algo é capaz de escapar de uma entidade da qual nada, por princípio, escapa – e fez isso unindo dois tipos de física que nunca se deram bem. Pena que a temperatura da radiação que ele previu seria minúscula na prática. Algumas frações de grau acima do zero absoluto. Não há como enxergar algo tão sutil, mesmo que pudéssemos colocar um termômetro na boca do buraco negro. E é por causa desse problema prático que Hawking morreu sem um Prêmio Nobel. A tecnologia necessária para comprovar sua maior realização talvez ainda esteja a décadas de distância. Mesmo assim, ela se tornou consenso na física. Não existe teoria hoje que não leve em conta a existência da radiação Hawking.
E ela tem uma consequência assustadora. Daqui a mais anos do que cabem zeros nesta revista, Terra, Sol e todas as estrelas vão virar pó. Esse pó vai ser engolido por um buraco negro, que por sua vez será engolido por outro, ainda maior. Sem terem o que comer, esses últimos buracos negros não terão opção a não ser sucumbir, lentamente, aos efeitos da radiação Hawking. E quando eles finalmente sumirem, vão levar junto uma coisa curiosa: o software do Universo.
Procura-se informação
Quando um buraco negro engole alguma coisa, ele não digere só matéria e energia. Ele põe para dentro algo mais abstrato: informação. Informação é qualquer coisa capaz de reduzir o grau de incerteza sobre o futuro – são dados sobre a maneira como as coisas estão agora que te permitem prever como elas estarão depois.
A informação, como a energia, é indestrutível. Pegue um livro. Ponha fogo nele. Se você tivesse a capacidade técnica de analisar a posição original e a trajetória percorrida por cada molécula de fumaça que compunha o livro, você poderia, em tese, usar essa informação para reconstruí-lo. O papel e a tinta não voltariam a ser papel e tinta, é óbvio. Mas, matematicamente, seria possível deduzir da fumaça o que estava escrito ali.
Todo buraco negro deixará de existir, derrotado pelo mundo quântico.
Pena que é tecnologicamente impossível saber tudo que há para saber sobre cada uma das moléculas que eram parte do livro e agora são fumaça. É mais informação do que todos os computadores do mundo podem processar. Para todos os efeitos, essa informação está escondida, inacessível. E os físicos também têm um nome para a quantidade de informação que está escondida em alguma coisa: entropia.
Entropia é o quanto você pode bagunçar uma coisa sem ninguém perceber o que mudou. Alterar a informação oculta sem alterar a informação visível. Para entender, vamos usar uma analogia: se seu quarto já está uma zona, tanto faz jogar uma meia aqui ou uma cueca suja ali – sua mãe não vai notar essas alterações. Isso é entropia alta. Se seu quarto é imaculadamente arrumado, por outro lado, uma cueca jogada na cama vai se destacar muito. Isso é entropia baixa.
John Wheeler, mentor da geração de físicos de Hawking (e criador do termo “buraco negro”), tinha bons motivos para acreditar que buracos negros eram latas de lixo de entropia. Que a bagunça inerente às coisas que você jogasse lá dentro desapareceria de vez do Universo. E isso é um problema enorme. Porque há uma lei muito bem estabelecida na física que diz que a desordem sempre aumenta no Universo – que um livro queimado não volta a ser um livro por obra do acaso.
Wheeler havia baseado sua conclusão no fato de que a aparência de dois buracos negros diferentes é sempre idêntica: tudo que você vê – ou melhor, que você não vê – é a esfera negra em torno da singularidade. O horizonte de eventos, aquele perímetro de segurança do qual nem luz nem sinal de celular escapam. Os teoremas que comprovam isso se chamam teoremas da calvície, porque determinam, metaforicamente, que buracos negros não têm “penteados” que os diferenciem de outros buracos negros. Eles são esferas escuras e lisas.
Frio, pero no mucho
Hawking descobriu que as partículas e antipartículas são as únicas coisas capazes de roubar energia dos buracos negros – até eles sumirem de vez
1. BEIRA DO ABISMO Às vezes, rola a criação de um par de partícula e antipartícula bem ao lado do buraco negro. E aí pode acontecer de uma cair e outra não.
2. ROMEU E JULIETA Separadas para sempre, as partículas não podem mais se aniquilar: são obrigadas a se materializar de vez. E, para se materializar, elas precisam tirar energia de algum lugar. Do próprio buraco negro.
3. FUGA DE ALCATRAZ A partícula que ficou de fora escapa, levando junto um pouquinho da energia do buraco negro. Essa fuga é detectada como um calorzinho muito tênue: a radiação Hawking.
4. PENSE NEGATIVO Já a partícula engolida adquire “energia negativa” (por conta da gravidade extrema). E engolir energia negativa é a mesma coisa que perder energia. O buraco diminui.
1 trilhonésimo de grau. É essa a temperatura do buraco negro que há no centro da Via Láctea
Foi um dos pupilos de Wheeler, Jacob Bekenstein, que arriscou discordar. Em 1972, ele, em parceria com Hawking, cravou que um buraco negro, na verdade, é o cúmulo da entropia, e não a falta dela. Que o buraco negro é como um quarto em que há tantos objetos, mas tantos objetos, que eles desabam sob o próprio peso, se misturam como se tivessem sido batidos no liquidificador e passam a ocupar o menor espaço que dá para qualquer coisa no Universo ocupar: espaço nenhum. Por isso, toda a informação do buraco negro está oculta. Ele é a bagunça máxima. Como no caso da fumaça do livro, a aparência homogênea está escondendo a informação no nível microscópico.
Hawking foi além e descobriu onde mora a informação oculta do buraco: fica armazenada na superfície de seu horizonte de eventos. Na “casca”. É como um HD com a maior capacidade de compactação possível: um bit (a menor unidade de informação possível) a cada 1,6 · 10−33 cm – o menor comprimento que ainda dá para chamar de comprimento. Se um grão de areia de 1 milímetro fosse do tamanho do Universo observável, esse comprimento seria dez vezes menor que o grão de areia. Como não dá para espremer mais nada na coisa mais espremida que existe, se você joga alguma coisa no buraco, o horizonte de eventos dele precisa obrigatoriamente esticar 1,6 · 10−33 cm para armazenar cada bit novo.
Foi um alívio. Hawking concluiu que buracos negros não só têm entropia – ou seja, obedecem a uma lei básica da física – como existe um jeito prático de medi-la: calculando sua área. Mas calma. Esse é só o começo da confusão cósmica gerada pelas singularidades.
Eu, holograma
Hawking descobriu que buracos negros são prisões de informação. Mas ele também descobriu que todo buraco negro vai sumir eventualmente em uma nuvem de radiação. Acontece que informação é um troço indestrutível: ela precisa ir parar em algum lugar depois que o buraco sumir. Mas onde? Bem-vindo ao “paradoxo da informação”, que ferve a cabeça dos físicos há décadas.
Tanto que, em 1981, o paradoxo da informação rendeu uma cena histórica no auditório da Universidade da Califórnia, em Santa Barbara. Um grupo de físicos – entre eles o próprio Hawking – fez uma enquete para ver qual era a solução favorita da comunidade para o problema. A alternativa “A informação é perdida de vez” ganhou 25 votos, incluindo o do britânico. “A informação vai para a radiação Hawking” ganhou 39. “A informação continua acessível em um ‘resto de buraco negro’” ganhou 7.
A realidade pode ser só um holograma, projetado da superfície de um buraco negro.
Mas ciência não é democracia. Não é decidida por voto popular. A brincadeira só revela o quanto nós estamos distantes de bater o martelo de vez nessa questão. O próprio Hawking, em 2004, perdeu uma aposta com o físico John Preskill ao mudar de opinião e admitir que, na verdade, a informação não poderia sumir de vez. O item apostado foi uma enciclopédia sobre beisebol – na qual, nas palavras engraçadinhas de Hawking, “a informação pode ser acessada sempre que desejado”.
Mas mesmo que o paradoxo da informação fosse resolvido, ainda restaria um problema nessa história. O horizonte de eventos, você deve se lembrar, é só um perímetro de segurança em torno do buraco negro que nada (repetindo, nem a luz) pode cruzar sem ser engolido. Isso significa que o software de um buraco negro – toda a informação que ele contém – cabe em uma superfície bidimensional, em algo 2D. E a projeção de uma superfície 2D em uma forma 3D tem aquele nome que já vimos em Star Wars: holograma.
Teóricos renomados como Leonard Susskind e Gerardus ‘T Hooft logo perceberam que, se toda a informação da coisa mais concentrada do mundo – um buraco negro – cabe na sua “casca”, então uma consequência lógica disso é que toda informação contida em qualquer coisa do Universo também caberia em uma superfície circundante. Em outras palavras, nada impede que tudo o que você chama de realidade seja um grande holograma. Que você seja uma manifestação 3D, de carne e osso (ou melhor, de matéria e energia), de um programa de computador da natureza – de um punhado de informação que está rodando em uma superfície 2D. É como se as montanhas, os planetas, as estrelas, os traços do seu rosto fossem uma grande ilusão projetada por uma Matrix. E a Matrix fosse a superfície escura e lisa de um buraco negro.
Parece ficção científica, mas é tudo matemática. E põe matemática nisso: essa hipótese hoje é uma das bases da Teoria das Cordas, a vanguarda da física contemporânea.
Hawking não trabalhou sozinho. Ele se tornou o símbolo de uma geração de físicos no mínimo tão importantes quanto ele. Penrose, Wheeler, Bekenstein, Susskind, Preskill e ‘T Hooft, entre vários outros, usaram as fundações deixadas por Einstein e pela física quântica para tirar conclusões insólitas sobre os mecanismos ocultos do Universo. Mecanismos que estão muito, muito além do que nosso cérebro foi programado para compreender, mas que, hoje, sabemos serem parte do cosmos. Como disse o próprio Hawking: “Somos só uma raça avançada de macacos em um planeta minúsculo de uma estrela bem medíocre. Mesmo assim, somos capazes de compreender o Universo”.
No final, quando tudo que já existiu estiver dentro de buracos negros, eles vão evaporar. E aí acabou o Universo.
Leia aqui a matéria original
O post Entenda de uma vez o trabalho e o legado de Stephen Hawking apareceu primeiro em Tesão News.
source https://tesaonews.com.br/noticia-tesao/entenda-de-uma-vez-o-trabalho-e-o-legado-de-stephen-hawking/
0 notes
watermelonsandalts2 · 2 years
Photo
Tumblr media Tumblr media Tumblr media
The same group shot as before but I retook it with different GShade presets because I’m indecisive and trying to nail that warm nostalgic feel.
4 notes · View notes