Tumgik
#Crystal Fuel
askglassanon · 1 year
Text
26
*The glamour that had been growing blurrier and frailer by the minute breaks, melting off and dissolving*
*Glass underneath is much paler, blue tint to her skin. The place around her eyes seem stucken as well as her cheeks*
*She's shivering again*
*The Nameless worble, nervous whispers fill the air and she pushes away from Raphael and pushes herself up wheezing*
// @tinydancerandthemoonchild
25 notes · View notes
possum-down · 1 year
Text
Tumblr media Tumblr media Tumblr media
RAGH my own take on xeno designs
143 notes · View notes
rohirric-hunter · 19 days
Text
IDK if I've posted this before but Ideal Location for Some Fireworks compilation
(Excluding all two locations where it might be reasonable to set off some fireworks)
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
7 notes · View notes
renklix · 2 years
Text
CRYSTALIZED EP 14 SPOILERS
Tumblr media Tumblr media Tumblr media Tumblr media
he’s gonna bite you
no but oni lloyd is genuinely kinda scary
185 notes · View notes
thenamesblurrito · 9 months
Note
Do you have any headcanons on the effects of energon on human physiology? E.g. prolonged exposure (just being around it), skin contact, fumes, etc. I'm torn between the idea of making it like gasoline/petrol/bleach (with fumes and whatnot) vs making it more "safe", more like an oil (probably causes dryness/irritation/etc. in long term, but if you drop a bit on you, it won't kill you)
to me it depends on continuity/specifically what relation humans have to the Cybertronian mythos. like, in canons where Earth is Unicron, i believe energon as Primus's blood may actually be metaphysically toxic more than physically, but dark energon may have the opposite effect. in canons like TFA where none of that is relevant, i figure it probably depends on the physical state of the energon. crystal won't be nearly as harmful as liquid, etc
in general i like to think in liquid fuel form it can give people some pretty severe rashes or chemical burns when splashed or dunked, or even temperature burns if it's highly charged enough. a few droplets won't do much harm if brushed off quick though. i also think energon as a "perfect/near-perfect" fuel source actually doesn't produce much if any fumes, even when burned by an engine, so it's probably fine for humans to be around it if safely contained? maybe processing the crystal to liquid creates fumes/aerosolized bits that would be hell to breathe but, apart from being explosively reactive, i don't typically think of energon as being harmful to exist around. long term incremental exposure danger, sure, but with some good OSHA compliance you should be fine
15 notes · View notes
safyresky · 6 months
Text
Okay y'all I'm being that mutual. To those of us watching tscs tomorrow right when it drops, what's the spoiler tag? tscs spoilers? Bc like. I need to block this shit so I don't get mad at work lmao
I'll be tagging with tscs spoilers and also dani watches tscs so that if my yelling gets annoying you can block it and keep enjoying 😁😁
8 notes · View notes
Text
rotating in my head the way the bureaucracy of the twin adders hates eyrie for weird legal situations
5 notes · View notes
tefmiles · 1 year
Text
input jerma into an ai so that it would create a realistic screen grab from an 80’s dark fantasy movie and created possibly the hottest unreal movie villain of all time
Tumblr media Tumblr media Tumblr media Tumblr media
23 notes · View notes
zakomoya · 11 months
Text
for my discord rp oomfs that follow me its funny how im seen as the bitch crazy over rp ships when im ngl im lowkey more insane over the crystals that heighten your mental illness
6 notes · View notes
strawberrycircuits · 10 months
Note
the uhhhh fairy god from windwaker that looks creepy and controls the fairyts like puppets but Zelda
oubbff... i always thought she looked like fi which is also making me think of sword spirit zelda. which i am of course very normal about too ,,
5 notes · View notes
askglassanon · 1 year
Text
29
*She's silent*
*The Nameless chatter* - Glass
// @tinydancerandthemoonchild
25 notes · View notes
king-k-ripple · 1 year
Photo
Tumblr media
11 notes · View notes
creativecuquilu · 2 years
Photo
Tumblr media
I can’t find the episode to this but here’s Tom Baker’s doctor winking at you for your pleasure.
5 notes · View notes
theafrochick · 1 month
Text
Vivzie should give us the new episode as an Easter present. Just saying.
1 note · View note
jcmarchi · 1 month
Text
Molecular Weaving Makes Polymer Composites Stronger Without Compromising Function - Technology Org
New Post has been published on https://thedigitalinsider.com/molecular-weaving-makes-polymer-composites-stronger-without-compromising-function-technology-org/
Molecular Weaving Makes Polymer Composites Stronger Without Compromising Function - Technology Org
At its most basic, chemistry is a lot like working with building blocks at its most basic level, but the materials are atoms and molecules. COFs – or covalent organic frameworks, a new class of porous crystals – are a great example of a material that behaves like a molecular Lego set, where individual building blocks are connected through strong chemical bonds to form a highly open and structured network.
This intricate structure provides a scaffold for polymer chains to thread or wrap during their formation and strength. Think of a woven scarf or basket – a single piece of yarn or twine may not be much on its own, but when woven together, the pattern enhances the final product’s overall performance. Furthermore, when these chains weave together, sometimes even the chemical reactions further strengthen the material’s properties.
Schematic illustration of the COF structure, polymers, and nanofibrils courtesy of Science Magazine / UC Berkeley
In 2016, Yaghi Research Group, led by UC Berkeley’s Professor of Chemistry Omar Yaghi, realized the first molecularly woven structure by interlacing the backbone of the framework in a 3D space. These molecular woven COF crystals are tough but extremely flexible, as every atom has a high degree of freedom to move around but is also locked in place, and as a whole the woven crystals are able to dissipate energy during stress to prevent fracture.
Today, together with Ting Xu, Professor of Chemistry and Materials Science & Engineering; and Rob Ritchie, Professor of Materials Science & Engineering, the lab is now leveraging both the porosity and molecular weaving to make polymer composites stronger, tougher, and more resistant to fracture by threading polymer strands through the woven network. Their findings have been published in a paper by��Science.
“This is exciting because most filler materials enhance one mechanical property at the detriment of another,” said Ephraim Neumann, a PhD candidate at the College of Chemistry working at the Yaghi Research Group. Neumann is sharing his first authorship with joint student of Xu and Ritchie, Junpyo (Patrick) Kwon, who graduated (PhD) last year from UC Berkeley.
But why are COFs themselves so useful to everyday life? One example is that due to their exceptional porosity, COFs are used extensively in storing and separating gases such as hydrogen and methane. Both hydrogen and methane are clean energy carriers that can be used in fuel cells and combustion engines. Storing them enables their use in transportation and power generation without producing harmful emissions.
Now, thanks to this new research that suggests polymer composites can be made more durable, the applications and uses have wider implications.
“When we add a small amount (1%) of these woven COF crystals to other materials such as polymer or plastic in this case, the materials become significantly tougher and can have a high tolerance for damages and fractures. This could have a huge impact on the materials industry,” said Yaghi.
For example, polyimide, found in almost every laptop and electrical wiring, was one of the investigated polymers in this study. By adding woven COF nanocrystals, the team was able to improve the mechanical performance of the polymer without compromising its thermal stability. This suggests this technique could lead to longer lifetimes for these composites. “Or if the material becomes more resilient, one could use less of it to achieve the same result,” hypothesized Neumann. Polyimide can also be found in the solar sails used by NASA, as it is often used as a support material that lends thermal and mechanical durability to many applications.
“Many properties of plastic products rely on polymer chain entanglements,” said Xu. “My favorite analogy is how an angel hair pasta and a bowtie pasta may respond to a swirl in the plate. Adding nanoparticles of these crystalline COFs can template how these long chains may arrange spatially and get the whole plate to work together. It also becomes feasible to pull out the chains, separate out polymers from COF nanoparticles and do the process again from scratch.”
When thinking about how this might affect industries beyond materials, Neumann concluded, “While this discovery focuses on specific polymers, the basic concept of using porous, molecularly woven COFs to enhance mechanical properties could be extended to many other materials.”
Source: UC Berkeley
You can offer your link to a page which is relevant to the topic of this post.
0 notes
midnightwind · 2 months
Text
Tumblr media
all the Mira posting just to share possibly the funniest out of context back and forth I wrote in a fever dream last night
1 note · View note